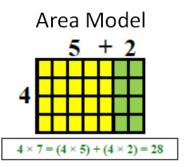
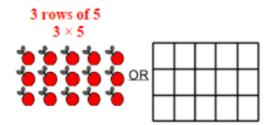

Algorithm

Area


Area

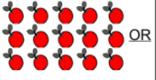
2 rows of 5 = 10 square units or 2 × 5 = 10 square units

The measure, in square units,


Area Model

A model of multiplication that shows the product within a rectangle drawing.

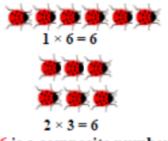
Array

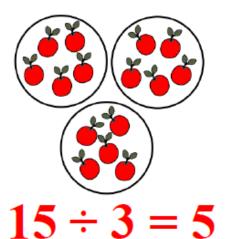

Array



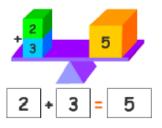
An arrangement of objects in equal rows.

Arrays


3 rows of 5 3 x 5


Composite Number

Composite Number


6 is a composite number.

Division

7b

Equation

Estimation

Estimation

How many jelly beans are in the jar?

A number close to an exact amount. An estimate tells

Expanded Form

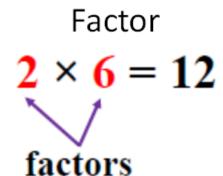
Expanded Form

$$263 = 200 + 60 + 3$$

A way to write numbers that shows the place value of each digit.

Factor Pairs

Factor Pairs


$$2\times 3=6$$

$$1 \times 6 = 6$$

The factor pairs for 6 are: 2 and 3 1 and 6

A set of two whole numbers that when multiplied will result

Factors

The whole numbers that are

12b

Formula

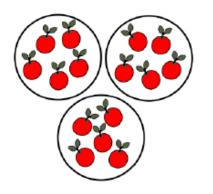
Formula

To find the area of any rectangle, multiply its length by its width. This rule can be written as an equation:

$$A = l \times w$$

A general mathematical rule that is written as an equation.

Multiple


Multiple

Multiples of 3

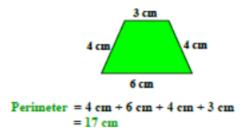
3, 6, 9, 12, 15, 18, 21 ...

The product of a whole number and any other whole number.

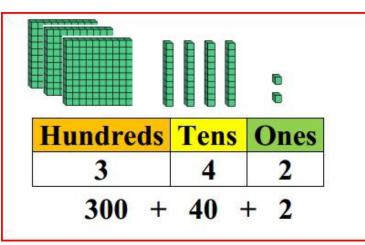
Multiplication

$$3 \times 5 = 5 + 5 + 5$$

Pattern


Pattern

A repeating or growing sequence or design. An ordered set of numbers or shapes ar-


Perimeter

Perimeter

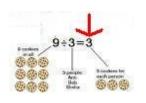
The distance around a figure.

Place Value

Prime Number

Prime Number

$$1 \times 5 = 5$$


A whole number greater than 0 that has exactly two different

Product

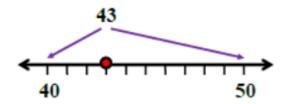
$5 \times 3 = 15$

Quotient

Remainder

Remainder

There are 32 students going on a field trip. Each chaperone can supervise 5 students. How many chaperones are needed?


$$32 \div 5 = 6 \text{ r2}$$

7 chaperones are needed.

The amount left over when one

Rounding

Rounding

To find the nearest ten, hundred, thousand, and so on.

23b

Standard Algorithm

Algorithm

```
47
+ 16
13 Add the ones. 7 + 6 = 13
+ 50 Add the tens. 40 + 10 = 50
63 Add the partial sums.
```

A step-by-step method for